Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 538
Filter
1.
Acta cir. bras ; 39: e390224, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1533355

ABSTRACT

Purpose: To investigate the protective effect of breviscapine on myocardial ischemia-reperfusion injury (MIRI) in diabetes rats. Methods: Forty rats were divided into control, diabetes, MIRI of diabetes, and treatment groups. The MIRI of diabetes model was established in the latter two groups. Then, the treatment group was treated with 100 mg/kg breviscapine by intraperitoneal injection for 14 consecutive days. Results: After treatment, compared with MIRI of diabetes group, in treatment group the serum fasting blood glucose, fasting insulin, homeostasis model assessment of insulin resistance, and glycosylated hemoglobin levels decreased, the serum total cholesterol, triacylglycerol, and low-density lipoprotein cholesterol levels decreased, the serum high-density lipoprotein cholesterol level increased, the heart rate decreased, the mean arterial pressure, left ventricular ejection fraction, and fractional shortening increased, the serum cardiac troponin I, and creatine kinase-MB levels decreased, the myocardial tumor necrosis factor α and interleukin-6 levels decreased, the myocardial superoxide dismutase level increased, and the myocardial malondialdehyde level decreased (all P < 0.05). Conclusions: For treating MIRI of diabetes in rats, the breviscapine can reduce the blood glucose and lipid levels, improve the cardiac function, reduce the myocardial injury, and decrease the inflammatory response and oxidative stress, thus exerting the alleviating effect.


Subject(s)
Animals , Rats , Myocardial Reperfusion Injury , Oxidative Stress , Diabetes Mellitus , Inflammation , Ischemia
2.
Chinese Medical Journal ; (24): 1349-1357, 2023.
Article in English | WPRIM | ID: wpr-980848

ABSTRACT

BACKGROUND@#Dysfunction of the gap junction channel protein connexin 43 (Cx43) contributes to myocardial ischemia/reperfusion (I/R)-induced ventricular arrhythmias. Cx43 can be regulated by small ubiquitin-like modifier (SUMO) modification. Protein inhibitor of activated STAT Y (PIASy) is an E3 SUMO ligase for its target proteins. However, whether Cx43 is a target protein of PIASy and whether Cx43 SUMOylation plays a role in I/R-induced arrhythmias are largely unknown.@*METHODS@#Male Sprague-Dawley rats were infected with PIASy short hairpin ribonucleic acid (shRNA) using recombinant adeno-associated virus subtype 9 (rAAV9). Two weeks later, the rats were subjected to 45 min of left coronary artery occlusion followed by 2 h reperfusion. Electrocardiogram was recorded to assess arrhythmias. Rat ventricular tissues were collected for molecular biological measurements.@*RESULTS@#Following 45 min of ischemia, QRS duration and QTc intervals statistically significantly increased, but these values decreased after transfecting PIASy shRNA. PIASy downregulation ameliorated ventricular arrhythmias induced by myocardial I/R, as evidenced by the decreased incidence of ventricular tachycardia and ventricular fibrillation, and reduced arrythmia score. In addition, myocardial I/R statistically significantly induced PIASy expression and Cx43 SUMOylation, accompanied by reduced Cx43 phosphorylation and plakophilin 2 (PKP2) expression. Moreover, PIASy downregulation remarkably reduced Cx43 SUMOylation, accompanied by increased Cx43 phosphorylation and PKP2 expression after I/R.@*CONCLUSION@#PIASy downregulation inhibited Cx43 SUMOylation and increased PKP2 expression, thereby improving ventricular arrhythmias in ischemic/reperfused rats heart.


Subject(s)
Rats , Male , Animals , Myocardial Reperfusion Injury/metabolism , Connexin 43/genetics , Sumoylation , Down-Regulation , Rats, Sprague-Dawley , Arrhythmias, Cardiac/drug therapy , Myocardial Ischemia/metabolism , RNA, Small Interfering/metabolism
3.
Chinese Acupuncture & Moxibustion ; (12): 669-678, 2023.
Article in Chinese | WPRIM | ID: wpr-980777

ABSTRACT

OBJECTIVE@#To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABAA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.@*METHODS@#A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery. EA was applied at bilateral "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA group and the agonist+EA group, with continuous wave, in frequency of 2 Hz and intensity of 1 mA, 30 min each time, once a day for 7 consecutive days. After intervention, the MIRI model was established. In the agonist group, the muscone (agonist of GABAA receptor, 1 g/L) was injected in fastigial nucleus for 7 consecutive days before modeling, 150 μL each time, once a day. In the agonist+EA group, the muscone was injected in fastigial nucleus 30 min before EA intervention. The data of electrocardiogram was collected by PowerLab standard Ⅱ lead, and ST segment displacement and heart rate variability (HRV) were analyzed; the serum levels of norepinephrine (NE), creatine kinase isoenzyme MB (CK-MB) and cardiac troponin I (cTnI) were detected by ELISA; the myocardial infarction area was measured by TTC staining; the morphology of myocardial tissue was observed by HE staining; the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were detected by immunohistochemistry and real-time PCR.@*RESULTS@#Compared with the sham operation group, in the model group, ST segment displacement and ratio of low frequency to high frequency (LF/HF) of HRV were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber was broken and interstitial edema was serious, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01). Compared with the model group, in the EA group, ST segment displacement and LF/HF ratio were decreased (P<0.01), HRV frequency domain analysis showed reduced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were decreased (P<0.01), the percentage of myocardial infarction area was decreased (P<0.01), myocardial fiber breakage and interstitial edema were lightened, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were decreased (P<0.01). Compared with the EA group, in the agonist group and the agonist+EA group, ST segment displacement and LF/HF ratio were increased (P<0.01), HRV frequency domain analysis showed enhanced sympathetic nerve excitability, the serum levels of NE, CK-MB and cTnI were increased (P<0.01), the percentage of myocardial infarction area was increased (P<0.01), myocardial fiber breakage and interstitial edema were aggravated, the positive expression and mRNA expression of GABAA receptor in fastigial nucleus were increased (P<0.01).@*CONCLUSION@#EA pretreatment can improve the myocardial injury in MIRI rats, and its mechanism may be related to the inhibition of GABAA receptor expression in fastigial nucleus, thereby down-regulating the excitability of sympathetic nerve.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Cerebellar Nuclei , Electroacupuncture , Myocardial Reperfusion Injury/therapy , Receptors, GABA-A/genetics , RNA, Messenger
4.
Chinese journal of integrative medicine ; (12): 81-88, 2023.
Article in English | WPRIM | ID: wpr-971316

ABSTRACT

Mitophagy is one of the important targets for the prevention and treatment of myocardial ischemia/reperfusion injury (MIRI). Moderate mitophagy can remove damaged mitochondria, inhibit excessive reactive oxygen species accumulation, and protect mitochondria from damage. However, excessive enhancement of mitophagy greatly reduces adenosine triphosphate production and energy supply for cell survival, and aggravates cell death. How dysfunctional mitochondria are selectively recognized and engulfed is related to the interaction of adaptors on the mitochondrial membrane, which mainly include phosphatase and tensin homolog deleted on chromosome ten (PTEN)-induced kinase 1/Parkin, hypoxia-inducible factor-1 α/Bcl-2 and adenovirus e1b19k Da interacting protein 3, FUN-14 domain containing protein 1 receptor-mediated mitophagy pathway and so on. In this review, the authors briefly summarize the main pathways currently studied on mitophagy and the relationship between mitophagy and MIRI, and incorporate and analyze research data on prevention and treatment of MIRI with Chinese medicine, thereby provide relevant theoretical basis and treatment ideas for clinical prevention of MIRI.


Subject(s)
Humans , Mitochondria/metabolism , Mitophagy/genetics , Myocardial Reperfusion Injury , Protein Kinases/metabolism
5.
China Journal of Chinese Materia Medica ; (24): 879-889, 2023.
Article in Chinese | WPRIM | ID: wpr-970559

ABSTRACT

Acute myocardial infarction seriously endangers the health of people due to its high morbidity and high mortality. Reperfusion strategy is the preferred treatment strategy for acute myocardial infarction. However, reperfusion may lead to additional heart damage, namely myocardial ischemia reperfusion injury(MIRI). Therefore, how to reduce myocardial ischemia reperfusion injury has become one of the urgent problems to be solved in cardiovascular disease. Traditional Chinese medicine(TCM) has the multi-component, multi-channel, and multi-target advantages in the treatment of MIRI, which offers new ideas in this aspect. TCM containing flavonoids has a variety of biological activities and plays a significant role in the treatment of MIRI, which has great research and development application value. TCM containing flavonoids can regulate multiple signaling pathways of MIRI, such as phosphatidylinositol 3 kinase/kinase B(PI3K/Akt) signaling pathway, Janus kinase/signal transducer and activator of transcriptions(JAK/STAT) signaling pathway, adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK) signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway, nuclear factor-erythroid 2-related factor 2/antioxidant response element(Nrf2/ARE) signaling pathway, nuclear factor kappa-B(NF-κB) signaling pathway, silent information regulator 1(Sirt1) signaling pathway, and Notch signaling pathway. It reduces MIRI by inhibiting calcium overload, improving energy metabolism, regulating autophagy, and inhibiting ferroptosis and apoptosis. Therefore, a review has been made based on the regulation of relative signaling pathways against MIRI by TCM containing flavonoids, thus providing theoretical support and potential therapeutic strategies for TCM to alleviate MIRI.


Subject(s)
Humans , Myocardial Reperfusion Injury , Phosphatidylinositol 3-Kinases , Signal Transduction , NF-kappa B , AMP-Activated Protein Kinases , Flavonoids
6.
China Journal of Chinese Materia Medica ; (24): 725-735, 2023.
Article in Chinese | WPRIM | ID: wpr-970542

ABSTRACT

This study aimed to parallelly investigate the cardioprotective activity of Cinnamomi Ramulus formula granules(CRFG) and Cinnamomi Cortex formula granules(CCFG) against acute myocardial ischemia/reperfusion injury(MI/RI) and the underlying mechanism based on the efficacy of "warming and coordinating the heart Yang". Ninety male SD rats were randomly divided into a sham group, a model group, CRFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, and CCFG low and high-dose(0.5 and 1.0 g·kg~(-1)) groups, with 15 rats in each group. The sham group and the model group were given equal volumes of normal saline by gavage. Before modeling, the drug was given by gavage once a day for 7 consecutive days. One hour after the last administration, the MI/RI rat model was established by ligating the left anterior descending artery(LAD) for 30 min ischemia followed by 2 h reperfusion except the sham group. The sham group underwent the same procedures without LAD ligation. Heart function, cardiac infarct size, cardiac patho-logy, cardiomyocyte apoptosis, cardiac injury enzymes, and inflammatory cytokines were determined to assess the protective effects of CRFG and CCFG against MI/RI. The gene expression levels of nucleotide-binding oligomerization domain-like receptor family pyrin domain protein 3(NLRP3) inflammasome, apoptosis-associated speck-like protein containing a CARD(ASC), cysteinyl aspartate specific proteinase-1(caspase-1), Gasdermin-D(GSDMD), interleukin-1β(IL-1β), and interleukin-18(IL-18) were determined by real-time quantitative polymerase chain reaction(RT-PCR). The protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD were determined by Western blot. The results showed that both CRFG and CCFG pretreatments significantly improved cardiac function, decreased the cardiac infarct size, inhibited cardiomyocyte apoptosis, and reduced the content of lactic dehydrogenase(LDH), creatine kinase MB isoenzyme(CK-MB), aspartate transaminase(AST), and cardiac troponin Ⅰ(cTnⅠ). In addition, CRFG and CCFG pretreatments significantly decreased the levels of IL-1β, IL-6, and tumor necrosis factor-α(TNF-α) in serum. RT-PCR results showed that CRFG and CCFG pretreatment down-regulated the mRNA expression levels of NLRP3, caspase-1, ASC, and downstream pyroptosis-related effector substances including GSDMD, IL-18, and IL-1β in cardiac tissues. Western blot revealed that CRFG and CCFG pretreatments significantly decreased the protein expression levels of NLRP3, caspase-1, GSDMD, and N-GSDMD in cardiac tissues. In conclusion, CRFG and CCFG pretreatments have obvious cardioprotective effects on MI/RI in rats, and the under-lying mechanism may be related to the inhibition of NLRP3/caspase-1/GSDMD signaling pathway to reduce the cardiac inflammatory response.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , Interleukin-18 , Myocardial Reperfusion Injury , NLR Family, Pyrin Domain-Containing 3 Protein , Tumor Necrosis Factor-alpha , Myocardial Infarction , Caspase 1
7.
Acta cir. bras ; 37(7): e370701, 2022. graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1402968

ABSTRACT

Purpose: Tanshinone IIA is a well-known lipophilic active constituent refined from traditional Chinese medicines, danshen. It has been previously demonstrated to possess various biological properties, including anti-inflammatory, antioxidant, promoting angiogenesis effect and so on. However, the mechanism of tanshinone IIA on myocardial ischemia-reperfusion injury (MI/RI) remains unclear. In this study, we investigated the effect of tanshinone IIA on MI/RI. Methods: MI/RI rat models were set up. Echocardiographic evaluation and hematoxylin and eosin staining were performed to analyze the cardiac function and morphology of MI/RI. Western blot was conducted for the detection of protein expression of pyrin domain containing 3 (NLRP3) and caspase-1 in heart tissues. Flow cytometry and real-time polymerase chain reaction were used for the detection of proinflammatory cytokines and Th17 cells differentiation. Results: We found that tanshinone IIA alleviated the myocardial damage of MI/RI, ameliorated the overall and local inflammatory reaction, and produced a cardioprotective effect by inhibiting of NLRP3 inflammasome activation and Th17/Treg cells differentiation. Conclusions: Our results highlighted the cardio-protective effect of tanshinone IIA on MI/RI and uncovered its underlying mechanism related to the NLRP3 inflammasome inhibition and the modulation of Th17/Treg cells differentiation.


Subject(s)
Animals , Rats , Myocardial Reperfusion Injury/drug therapy , Myocardial Ischemia/drug therapy , Salvia miltiorrhiza/chemistry , Th17 Cells , NLR Family, Pyrin Domain-Containing 3 Protein , Medicine, Chinese Traditional
8.
Journal of Southern Medical University ; (12): 1082-1088, 2022.
Article in Chinese | WPRIM | ID: wpr-941045

ABSTRACT

OBJECTIVE@#To explore the role of salt-inducible kinase 2 (SIK2) in myocardial ischemia-reperfusion (IR) injury in rats.@*METHODS@#Fifteen male SD rats were randomized equally into sham operation group, myocardial IR model group, and SIK2 inhibitor group (in which the rats were treated with intravenous injection of 10 mg/kg bosutinib via the left femoral vein 24 h before modeling). Ultrasound was used to detect the cardiac function of the rats, and myocardial pathologies were observed with HE staining. Transmission electron microscopy was used to observe autophagy of myocardial cells, and Western blotting was performed to detect the contents of the autophagy-related proteins SIK2, LC3B, Beclin-1, p62 and the expressions of p-mTOR, mTOR, p-ULK1, and ULK1 in myocardial tissue.@*RESULTS@#Myocardial IR injury significantly increased the number of autophagosomes (P < 0.05) and the expression of SIK2 protein (P < 0.01) in the myocardial tissues. Treatment with bosutinib before modeling obviously lowered the expression of SIK2 protein (P < 0.01), alleviated myocardial pathologies, and reduced the number of autophagosomes (P < 0.05) in the myocardial tissue. The rats with myocardial IR injury showed obviously lowered LVEF and FS values (P < 0.001), which were significantly improved by bosutinib treatment (P < 0.05); no significant difference was detected in IVSDd or LVPWDd among the 3 groups (P > 0.05). Myocardial IR injury obviously increased the expressions of LC3-II/LC3-I and Beclin-1 proteins and lowered the expression of p62 protein (P < 0.01), and these changes were significantly rescued by bosutinib treatment (P < 0.05). The rat models of myocardial IR injury showed significantly increased expression of p-ULK1 (Ser757) (P < 0.01) and lowered expression of p-mTOR protein (P < 0.0001) in the myocardium, and these changes were obviously reversed by bosutinib (P < 0.01 or 0.05); there was no significant difference in mTOR and ULK1 expressions among the 3 groups (P > 0.05).@*CONCLUSION@#SIK2 may promote autophagy through the mTOR/ULK1 signaling pathway, and inhibiting SIK2 can reduce abnormal autophagy and alleviate myocardial IR injury in rats.


Subject(s)
Animals , Male , Rats , Autophagy , Autophagy-Related Protein-1 Homolog/metabolism , Beclin-1/metabolism , Down-Regulation , Myocardial Reperfusion Injury , Protein Serine-Threonine Kinases , Rats, Sprague-Dawley , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
9.
Arq. bras. cardiol ; 117(6): 1134-1144, dez. 2021. graf
Article in Portuguese | LILACS | ID: biblio-1350046

ABSTRACT

Resumo Fundamento A cardiopatia isquêmica atraiu muito atenção devido às altas taxas de mortalidade, custos do tratamento e a crescente morbidade na população jovem. Estratégias de reperfusão reduziram a mortalidade. Porém, a reperfusão pode levar à morte do cardiomiócito e subsequente dano irreversível ao miocárdio. No momento, não há um tratamento eficiente e direcionado para a lesão de isquemia-reperfusão (I/R). Objetivos Avaliar se a dexmedetomidina (DEX) tem efeito protetivo na I/R do miocárdio e explorar os possíveis mecanismos por trás dela. Métodos Corações de ratos foram perfundidos com o sistema de perfusão de Langendorff e aleatoriamente distribuídos em cinco grupos: grupo controle, perfundido com solução de Krebs-Henseleit (K-H) por 205 minutos sem isquemia; e quatro grupos de teste que foram submetidos a 40 minutos de isquemia global e 120 minutos de reperfusão. O Grupo DEX, o grupo ioimbina (IO) e o grupo DEX + IO foram perfundidos com DEX (10 nM), IO (1 μM) ou a combinação de DEX e IO antes da reperfusão, respectivamente. A hemodinâmica cardíaca, o tamanho do infarto do miocárdio e a histologia do miocárdio foram avaliados. A expressão da proteína-78 regulada pela glicose (GRP78), a proteína quinase do retículo endoplasmático (PERK), a PERK fosforilada, o fator de iniciação eucariótico 2α (eIF2α), eIF2α fosforilado, o fator de transcrição 4 (TCF-4) e a proteína homóloga à proteína ligadora do acentuador CCAAT (CHOP) foram avaliados. P< 0,05 foi considerado para indicar a diferença estatisticamente significativa. Resultados O pré-condicionamento com DEX melhorou a função cardíaca nos corações com I/R, reduziu o infarto do miocárdio, a apoptose do miocárdio e a expressão de GRP78, p-PERK, eIF2α, p-eIF2α, TCF-4 e CHOP. Conclusões O pré-tratamento com DEX reduziu a lesão de I/R no miocárdio ao suprimir a apoptose, o que foi induzido pela via PERK.


Abstract Background Ischemic heart disease has attracted much attention due to its high mortality rates, treatment costs and the increasing morbidity in the young population. Strategies for reperfusion have reduced mortality. However, reperfusion can lead to cardiomyocyte death and subsequent irreversible myocardial damage. At present, the timely and targeted treatment of ischemia-reperfusion (I/R) injury is often lacking. Objectives To evaluate if dexmedetomidine (DEX) has a protective effect in myocardiual I/R and explore the possible mechanism behind it. Methods Rat hearts were perfused with a Langendorff perfusion system, and randomly assigned to five groups: control group, perfused with Krebs-Henseleit (K-H) solution for 205 minutes without ischemia; and four test groups that underwent 40 minutes of global ischemia and 120 min of reperfusion. The DEX group, the yohimbine (YOH) group and the DEX + YOH group were perfused with DEX (10 nM), YOH (1 μM) or the combination of DEX and YOH prior to reperfusion, respectively. Cardiac hemodynamics, myocardial infarct size, and myocardial histology were evaluated. The expression of glucose-related protein 78 (GRP78), protein kinase R-like ER kinase (PERK), phosphorylated PERK, eukaryotic initiation factor 2α (eIF2α), phosphorylated eIF2α, activating transcription factor 4 (ATF4), and CCAAT/enhancer-binding protein homologous protein (CHOP) were assessed. P<0.05 was considered to indicate a statistically significant difference. Results DEX preconditioning improved the cardiac function of I/R hearts, reduced myocardial infarction, myocardial apoptosis, and the expression of GRP78, p-PERK, eIF2α, p-eIF2α, ATF4 and CHOP. Conclusions DEX pretreatment reduced myocardial I/R injury by suppressing apoptosis, which was induced by the PERK pathway.


Subject(s)
Animals , Rats , Myocardial Reperfusion Injury/prevention & control , Reperfusion Injury , Myocardial Ischemia , Dexmedetomidine/pharmacology , Myocardial Infarction/prevention & control , Myocardial Infarction/drug therapy , Signal Transduction
11.
Acta cir. bras ; 36(2): e360207, 2021. tab, graf
Article in English | LILACS | ID: biblio-1152700

ABSTRACT

ABSTRACT Purpose The present study explored the influence of liraglutide on remote preconditioning-mediated cardioprotection in diabetes mellitus along with the role of nuclear factor erythroid 2-related factor 2 (Nrf2), hypoxia inducible factor (HIF-1α) and hydrogen sulfide (H2S). Methods Streptozotocin was given to rats to induce diabetes mellitus and rats were kept for eight weeks. Four cycles of ischemia and reperfusion were given to hind limb to induce remote preconditioning. After 24 h, hearts were isolated and subjected to 30 min of ischemia and 120 min of reperfusion on Langendorff system. Liraglutide was administered along with remote preconditioning. Cardiac injury was assessed by measuring the release of creatine kinase (CK-MB), cardiac troponin (cTnT) and development of left ventricular developed pressure. After ischemia-reperfusion, hearts were homogenized to measure the nuclear cytoplasmic ratio of Nrf2, H2S and HIF-1α levels. Results In diabetic rats, there was more pronounced injury and the cardioprotective effects of remote preconditioning were not observed. Administration of liraglutide restored the cardioprotective effects of remote preconditioning in a dose-dependent manner. Moreover, liraglutide increased the Nrf2, H2S and HIF-1α levels in remote preconditioning-subjected diabetic rats. Conclusions Liraglutide restores the lost cardioprotective effects of remote preconditioning in diabetes by increasing the expression of Nrf2, H2S and HIF-1α.


Subject(s)
Animals , Rats , Myocardial Reperfusion Injury/prevention & control , Ischemic Preconditioning, Myocardial , Diabetes Mellitus, Experimental/drug therapy , Hydrogen Sulfide , Hydrogen Sulfide/pharmacology , Myocardial Infarction , Signal Transduction , Rats, Wistar , NF-E2-Related Factor 2 , Liraglutide/pharmacology
12.
China Journal of Chinese Materia Medica ; (24): 1345-1356, 2021.
Article in Chinese | WPRIM | ID: wpr-879038

ABSTRACT

Myocardial ischemia-reperfusion injury(MIRI) is an urgent problem in clinical treatment. As cardiomyocytes are terminal cells, MIRI-induced cardiomyocyte death will irreversibly damage the structure and function of the heart. In previous studies, apoptosis was considered to be the only way to regulate cell death, while necrosis could not be regulated. However, current studies have shown that cell necrosis could also be regulated, which was collectively called programmed cell death(PCD). Regulated cell death is actively mediated through molecular pathways, so there is the possibility of inhibiting this signaling to reduce MIRI. At present, PCD mainly includes apoptosis, autophagy, necrosis, pyroptosis and ferroptosis. As a unique treature in China, traditional Chinese medicine has the advantages of multiple pathways, multiple targets, low toxicity, less side effects and low economic costs. With the in-depth study of the efficacy of traditional Chinese medicine against MIRI, it has been confirmed that traditional Chinese medicine could regulate PCD to reduce MIRI. Therefore, this paper focuses on the relationship between PCD and MIRI, and new studies on intervention with relevant traditional Chinese medicine, with the aim to provide new MIRI prevention and treatment methods from the perspective of "intervention of PCD".


Subject(s)
Humans , Apoptosis , China , Medicine, Chinese Traditional , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac
13.
Chinese Acupuncture & Moxibustion ; (12): 525-530, 2021.
Article in Chinese | WPRIM | ID: wpr-877651

ABSTRACT

OBJECTIVE@#To observe the effect of electroacupuncture (EA) preconditioning at heart meridian acupoints on the contents of dopamine (DA) and 5-hydroxytryptamine (5-HT) in lateral hypothalamus area (LHA) and cerebellar fastigial nucleus (FN) in the rats with acute myocardial ischemia-reperfusion injury (MIRI), and explore the role and mechanism of LHA and FN in the effect of EA at heart meridian acupoints against acute MIRI.@*METHODS@#Sixty SD rats were randomly divided into a sham-operation group, a model group, an EA heart meridian group and an EA lung meridian group, 12 rats in each group, as well as an LHA plus heart meridian group (damage of bilateral LHA) and an FN plus heart meridian group (damage of bilateral FN), 6 rats in each one. Three days after nucleus destruction, EA was applied to "Shenmen" (HT 7) and "Tongli" (HT 5) in the EA heart meridian group, the LHA plus heart meridian group and the FN plus heart meridian group and EA was applied to "Taiyuan" (LU 9) and "Lieque" (LU 7) in the EA lung meridian group, with 1 V in stimulating voltage and 2 Hz in frequency, lasting 20 minutes each time, once a day, for consecutively 7 days before model replication. Except in the sham-operation group, MIRI rat models were duplicated by ligation of the left anterior descending branch of the coronary artery in the rest groups. Using Power lab physiological recorder, ST segment displacement value was recorded before modeling, 30 min after ligation and 120 min after reperfusion separately. The high performance liquid chromatography-electrochemical detection and analysis system was adopted to determine the contents of DA and 5-HT in LHA and FN dialysate after rat modeling in each group.@*RESULTS@#In comparison of ST segment displacement value 30 min after ligation and 120 min after reperfusion among groups, the value in the model group was higher than that in the sham-operation group (@*CONCLUSION@#EA preconditioning at heart meridian acupoints can effectively alleviate myocardial injury in acute MIRI rats, during which, DA and 5-HT in LHA and FN may be the important material basis.


Subject(s)
Animals , Rats , Acupuncture Points , Cerebellar Nuclei , Dopamine , Electroacupuncture , Hypothalamic Area, Lateral , Myocardial Ischemia , Myocardial Reperfusion Injury/therapy , Rats, Sprague-Dawley , Serotonin
14.
Chinese Journal of Medical Genetics ; (6): 812-817, 2021.
Article in Chinese | WPRIM | ID: wpr-888403

ABSTRACT

OBJECTIVE@#To study the effect of silencing LncRNA SNHG7 on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and its targeted regulation on miR-181b-5p.@*METHODS@#Rat cardiomyocytes H9c2 were cultured in vitro and randomly divided into control group, H/R group, H/R + si-NC group, H/R + si-SNHG7 group, H/R + si-SNHG7 + anti-miR-NC group and H/R + si-SNHG7 + anti-miR-181b-5p group. The content of lactate dehydrogenase (LDH), malondialedhyde (MDA) and the activity of superoxide dismutase (SOD) were detected. Flow cytometry was carried out to detect the rate of apoptosis. qRT-PCR was used to detect the expression of SNHG7 and miR-181b-5p. Dual luciferase report experiment was used to verify the targeting relationship between SNHG7 and miR-181b-5p. Western blotting was used to detect the expression of Bax and Bcl-2.@*RESULTS@#Compared with the control group, the H/R group showed significantly increased SNHG7 expression in cardiomyocytes, reduced miR-181b-5p expression, higher levels of LDH and MDA, reduced activity of SOD, increased cell apoptosis rate, higher level of Bax protein, and reduced level of Bcl-2 protein (all P< 0.05). Compared with the H/R and H/R + si-NC groups, the H/R + si-SNHG7 group had significantly reduced level of LDH and MDA, increased activity of SOD, reduced apoptosis rate, reduced level of Bax protein, increased level of Bcl-2 protein (all P< 0.05). The dual luciferase report experiment confirmed that SNHG7 could target miR-181b-5p. Interference with the expression of miR-181b-5p could reduce the effect of silencing SNHG7 on H/R-induced cardiomyocyte oxidative stress and apoptosis.@*CONCLUSION@#Silencing SNHG7 may inhibit H/R-induced cardiomyocyte oxidative stress and apoptosis by up-regulating the expression of miR-181b-5p, thereby exerting a protective effect on cardiomyocytes.


Subject(s)
Animals , Rats , Apoptosis , Hypoxia , MicroRNAs/genetics , Myocardial Reperfusion Injury , Myocytes, Cardiac , RNA, Long Noncoding/genetics
15.
China Journal of Chinese Materia Medica ; (24): 3943-3948, 2021.
Article in Chinese | WPRIM | ID: wpr-888120

ABSTRACT

The study aims to investigate the effect of the compatibility of paeonol and paeoniflorin(hereinafter referred to as the compatibility) on the expression of myocardial proteins in rats with myocardial ischemia injury and explore the underlying mechanism of the compatibility against myocardial ischemia injury. First, the acute myocardial infarction rat model was established by ligation of the anterior descending branch of the left coronary artery. The model rats were given(ig) paeonol and paeoniflorin. Then protein samples were collected from rat cardiac tissue and quantified by tandem mass tags(TMT) to explore the differential proteins after drug intervention. The experimental results showed that differential proteins mainly involved phagocytosis engulfment, extracellular space, and antigen binding, as well as Kyoto encyclopedia of genes and genomes(KEGG) pathways of complement and coagulation cascades, syste-mic lupus erythematosus, and ribosome. In this study, the target proteins and related signaling pathways identified by differential proteomics may be the biological basis of the compatibility against myocardial ischemia injury in rats.


Subject(s)
Animals , Rats , Acetophenones , Glucosides , Monoterpenes , Myocardial Ischemia/genetics , Myocardial Reperfusion Injury , Proteomics , Rats, Sprague-Dawley
16.
Chinese Journal of Medical Genetics ; (6): 1199-1203, 2021.
Article in Chinese | WPRIM | ID: wpr-922023

ABSTRACT

OBJECTIVE@#To study the effect of down-regulating miR-488 targeting Jag1 on the injury of hypoxia-reoxygenation myocardial H9c2 cells.@*METHODS@#A hypoxic-reoxygenated myocardial H9c2 cell injury model was constructed. miR-488 inhibitor was used to transfect the cells. CCK-8 method and flow cytometry were used to detect cell proliferation and apoptosis in each group. Lactate dehydrogenase (LDH), superoxide dismutase (SOD), malonaldehyde (MDA), catalase (CAT) levels were detected. Western blotting was used to detect the expression of Bcl-2 associated X Protein (Bax) and B cell lymphoma/lewkmia-2 (Bcl-2). Target genes of miR-488 were predicted, and a luciferase reporter system was used to verify the targeting relationship between the two. Myocardial H9c2 cells were co-transfected with miR-488 inhibitor and Jag1 siRNA, and treated with hypoxia and reoxygenation, cell proliferation, apoptosis, LDH, SOD, MDA, CAT levels, and Bax, Bcl-2 protein expression were detected.@*RESULTS@#The expression of miR-488 in the hypoxia-reoxygenated myocardial H9c2 cells was increased, along with reduced cell proliferation, increased apoptosis, increased Bax protein expression, decreased Bcl-2 protein expression, increased MDA, decreased CAT and SOD, and increased LDH level in the supernatant of cell culture. When myocardial H9c2 cells were transfected with miR-488 inhibitor and treated with hypoxia and reoxygenation, the expression of miR-488 was decreased, along with increased cell proliferation, decreased apoptosis, decreased Bax protein expression, increased Bcl-2 protein expression, decreased MDA, increased CAT and SOD, and decreased LDH level in the supernatant of cell culture. Down-regulation of miR-488 could target and down-regulate Jag1 expression. And Jag1 siRNA could reverse the effect of miR-488 inhibitor on the proliferation, apoptosis, LDH, SOD, MDA, CAT levels and the expression of Bax and Bcl-2 of hypoxic-reoxygenated myocardial H9c2 cells.@*CONCLUSION@#Down-regulating miR-488 targeted Jag1 can attenuate hypoxia-reoxygenation induced myocardial H9c2 cell injury.


Subject(s)
Humans , Apoptosis/genetics , Down-Regulation , Hypoxia/genetics , Jagged-1 Protein/genetics , MicroRNAs/genetics , Myocardial Reperfusion Injury , Myocytes, Cardiac
17.
Rev. colomb. cardiol ; 27(3): 142-152, May-June 2020. tab, graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1289204

ABSTRACT

Resumen La infección por SARS-CoV2 es una pandemia. Se creía que el primer caso de esta enfermedad ocurrió el 8 de diciembre de 2019 en la provincia de Hubei en China, aunque posteriormente se indicó que el primer caso confirmado por laboratorio ocurrió el 1.( de diciembre de 2019 ante la presencia de un brote de neumonía en 59 pacientes sospechosos en un mercado local de mariscos en Wuhan. No solo produce patología respiratoria, con frecuencia compremete el sistema cardiovascular ya que produce lesión miocárdica, miocarditis, y, con cierta frecuencia, aumenta la descompensación de enfermedades cardiovasculares preestablecidas. En este artículo se trata de dilucidar el componente cardiovascular hasta ahora existente en la literatura y se sugieren algunos pasos a seguir en pacientes con estas enfermedades, acorde con la evidencia actual.


Abstract Infection due to SARS-CoV2 is a pandemic. It is believed that the first case occurred on 8 December 2019 in Hubei province in China, although it was later indicated that the first laboratory-confirmed case occurred on 1 December 2019 due to the presence of an outbreak of suspected pneumonia in 59 patients in a shellfish market in Wuhan. It not only caused a respiratory disease, it often compromised the cardiovascular system since it produces a myocardial lesion, myocarditis, and, less often, increased the decompensation of pre-established cardiovascular diseases. An attempt is made in this article to elucidate the cardiovascular component presented in the current literature, and to suggest some steps to follow in patients with these diseases in accordance with the current evidence.


Subject(s)
Humans , Male , Female , Coronavirus , Heart Failure , Pneumonia , Respiratory Distress Syndrome, Newborn , Myocardial Reperfusion Injury , Severe Acute Respiratory Syndrome , Myocarditis
18.
CorSalud ; 12(2): 171-183, graf
Article in Spanish | LILACS | ID: biblio-1133607

ABSTRACT

RESUMEN Desde los primeros informes de pacientes infectados con el SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) en la provincia China de Wuhan, la infección por el nuevo coronavirus ha contagiado a más de 4,7 millones de personas y los fallecidos superan los 315000, hasta el 18 de mayo del 2020. La lesión o daño miocárdico queda definido, como la detección de un valor de las troponinas cardíacas (T o I) por encima del percentil 99 del límite superior de referencia. El mecanismo exacto a partir del cual esta infección por el nuevo coronavirus le infringe un daño a las células del corazón no ha quedado totalmente esclarecido; no obstante, numerosos podrían ser los factores a tener en cuenta: desequilibrio entre el aporte y la demanda, la respuesta inflamatoria sistémica, hipoxia, disfunción microvascular y el daño miocárdico directo ocasionado por el virus.


ABSTRACT Since the first reports of patients infected with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) appeared in the Chinese province of Wuhan, the infection by the new coronavirus has infected more than 4.7 millions of people, and the amount of deaths is greater than 315,000, until May 18, 2020. The myocardial injury or damage is defined as the detection of a value of cardiac troponins (T or I) above the 99th percentile of the upper reference limit. The exact mechanism, from which this infection by the new coronavirus causes damage to the heart cells, has not been completely clarified; however, numerous factors could be taken into account: imbalance between the supply and the demand, systemic inflammatory response, hypoxia, microvascular dysfunction and the direct myocardial injury caused by the virus.


Subject(s)
Myocardial Reperfusion Injury , Coronavirus Infections , Peptidyl-Dipeptidase A
19.
CorSalud ; 12(2): 214-218,
Article in Spanish | LILACS | ID: biblio-1133612

ABSTRACT

RESUMEN La N-acetilcisteína es conocida en varias especialidades médicas. Su empleo en cardiología se ha incrementado desde hace décadas, por su potencial para disminuir el impacto del daño por reperfusión en el infarto miocárdico agudo. Pero el espectro de sus efectos es aún mayor, tiene acciones sobre los radicales de oxígeno, con un papel protector, por la vía de los grupos sulfhidrilos de regiones importantes de la membrana celular, los cuales interfieren y tienen efecto en la función endotelial y en los procesos complejos de adhesión como efectos secundarios; así como otros fenómenos del compartimento extravascular. Estos procesos están estrechamente relacionados con el aparato cardiovascular.


ABSTRACT N-acetylcysteine is known in a number of medical specialties and its ability to decrease the impact of reperfusion injury in acute myocardial infarction has boosted its use in cardiology over the past decades. N-acetylcysteine has a far-reaching range of effects since it functions as a protective agent against oxygen radicals through sulfhydryl groups in important regions of the cell membrane that interfere and affect endothelial functioning and complex adhesion processes as side effects; as well as other phenomena of the extravascular compartment. These processes are closely related to the cardiovascular system.


Subject(s)
Acetylcysteine , Myocardial Reperfusion Injury , Reperfusion Injury , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL